
Technical Report:
Development and Verification of Rule Based

Systems - a Survey of Developers

Valentin Zacharias

FZI Research Center for Information Technologies at the University of Karlsruhe,
zach@fzi.de,

http://www.fzi.de/ipe

Abstract. While there is great interest in rule based systems and their
development, there is little data about the tools and methods used and
the issues facing the development of these systems. To address this defi-
ciency, this paper presents the results from a survey of developers of rule
based systems.
The results from the survey give an overview of the methods and tools
used for development and the major issues hindering the development of
rule based systems. Recommendations for possible future research direc-
tions are presented.
The results point to verification and validation, debugging and overall
tool support as the main issues negatively affecting the development of
rule based systems. Further a lack of methodologies that appropriately
support developers of these systems was found.

1 Introduction

With the application of rules on the Semantic Web, the continuing rise of business
rule approaches and with initiatives to standardize and exchange rules, there is
currently a renewed and increasing interest in rule based software systems and
their development. At the same time, however, there is little data and overview
about the way rule bases are used, developed and which challenges developers of
these systems face; in sum there is little data that could be used to set priorities
for research and development.

To address this shortcoming this paper presents a survey of the methods and
tools used and the issues facing the development of rule based systems. Based
on prior experience [1] and much older surveys (see related work) verification
and particularly debugging issues were identified as particular important and
the survey was designed to focus on these.

This paper starts with a short related work section introducing two much
older studies that addressed similar questions, results from these survey are also
cited throughout the text where similar questions were used. The next sections
introduce the survey and presents data about the participants, their experience
and the rule base systems they develop. The core results from the survey are then

grouped into three sections, (1) Methods and Tools Used for Development, (2)
Verification, Bugs and Debugging and (3) Issues and Comparison to Procedural
Programming. The conclusions highlight the most important findings and use
these to derive possible directions for future research.

2 Related Work

In 1991, Hamilton et al. [2] questioned 70 people with respect to the state of the
practice in knowledge-based system verification and validation. The goal of this
survey was to document the state of the practice. The insight gathered during the
survey and follow up interviews was used to develop recommendations for further
V&V research. The findings from this survey included that 62% of developers
judged the developed expert system to be less accurate than the expert and 75%
judged it to be less accurate than expected.

Also published in 1991, O’Leary [3] used a mailed survey to query 34 devel-
opers of knowledge-based systems. This poll had the specific goal of testing a
number of hypotheses with respect to prototyping of knowledge based systems.
The core finding was that the prototyping development methodology is found to
lead to more robust models and that it does not increase the validation difficulty.

In the broader world of conventional software engineering (i.e. using proce-
dural or object-oriented languages) Cusumano et al. [4] compared the practices
used in software development across countries, finding in particular that Indian
software development projects used the most elaborate practices, combining tra-
ditional techniques such as specification and reviews with modern ideas like pair
programming. Zhao and Elbaum [5,6] explored the use of quality assurance tools
and techniques in open source projects. The most interesting findings from these
studies include, that while over half of the projects spend more than 20% of the
development time on testing, only 5% compute any test coverage measures and
the use of regression testing is not widespread. Finally, Runeson et al. [7] summa-
rize the (mostly experimental) empirical data with respect to quality assurance
methods. Among other things they found that on average only 25% to 50% of
faults are found during inspection and only a slightly higher 30% to 50% during
testing - concluding that on average half of the faults remain.

3 Survey Construction

The goal of the survey was to be an exploratory study of the methods and tools
used, and the issues facing the developers of rule based systems. The survey
focused on verification and in particular debugging as very important questions
that in the author’s experience are particularly problematic for the development
of rule based systems. Some questions were also derived from specific hypotheses,
described in detail below together with the results for the questions.

The survey was designed to be answerable in less than 15 minutes; included
17 questions spread over three pages and was conducted using the SurveyMonkey
[8] service. The survey with all questions in their original layout can be accessed

at http://vzach.de/papers/survey08.pdf. Participants were asked to answer
all questions with respect to the largest rule base in whose development they had
been involved with in the past 5 years.

4 Participants

Participants were recruited through emails sent to public mailing lists concerned
with rule based systems1, Jess and mailing lists of academic institutes; invita-
tions were also published on some blogs concerned with rule based systems2 . A
chance to win a camera was given as additional incentive to motivate people to
participate. 76 people opened the survey and 64 answered most questions; one
reply was removed because it consisted of obviously nonsensical answers.

Mean Median Std. Deviation

Person Month Development
PM for entire software 59 15 148
PM for rule base 9 5.5 15

Size of Rule Base
Number of rules 1969 120 8693
Size of average rule 9.3 5 17
Size of largest rule 24 11 39

Developers involved
Rule developers 3 2 4
Other software developers 3 1 8
Domain experts that created rules 1.5 1 2
Domain experts as consultants 1.9 1 2.5
Domain experts for V&V 1.7 1 2.4
Others 0.6 0 1.6

Table 1. Measures of the size of the rule base

For the purpose of analysis the wide variety of systems used by the respon-
dents was grouped into five groups:
1 The mailing lists where the CLIPS mailing list, RuleML ’all’ mailing list, the RIF

initiative mailing list, the JESS users mailing list, the GNU Prolog users mailing
list, the SWI Prolog mailing list, the TU Prolog users mailing list, the Pellet users
mailing list, the XSB users mailing list, the Jena developer mailing list, the Drools
developer mailing list and the Semantic Web mailing list of the W3C

2 Smart Enough System at http://smartenoughsystems.com/wp/, James Taylors De-
cision Management http://www.ebizq.net/blogs/decision_management/, Enter-
prise Decision Management Blog http://www.edmblog.com/ and finally the author’s
own blog at http://vzach.de/blog

http://vzach.de/papers/survey08.pdf
http://smartenoughsystems.com/wp/
http://www.ebizq.net/blogs/decision_management/
http://www.edmblog.com/
http://vzach.de/blog

– Prolog: 7 results; consisting of tuProlog(2), SWI Prolog (2), Visual Prolog
(1), XSB (1) and Yap Prolog (1)

– Declarative Rules: 11 results; consisting of F-logic - ontoprise (3), SWRL
- KAON2 (2), SWRL - Protege SWRL Tab (2), SWRL - PELLET (1), Jena
Rules (1), WSML-Flight(1), Ontology Works Remote Knowledge Server (1)
and Iris (1)

– Business Rule Management Systems (BRMS): 17 results; consisting
of JBoss /Drools (8), Fair Isaac Blaze Advisor (3), Yasu Quick Rules (SAP)
(2), BizTalk (1), NxBre (1), Acumen Business-Rule Manager(1), OpenRules
(1) and Ilog JRules/.Net rules (1)

– Shells: 24 results, consisting of Jess (12), Clips (9), Mandarax (1), Jamocha
(1) and KnowledgeWorks/LispWorks (1)

– Other: 1 results, using a ’Proprietary IT software engine’

The size of the reported systems varied widely (see Table 1); the average rule
base consists of 2000 rules, has 9 conditions/body atoms per average rule and is
developed in 9 person months. However, the average size is strongly influenced
by a small number of very large systems, half of the systems have not more than
120 rules. On average the rule base is part of a much larger software system that
takes almost 60 person months to develop. The largest system in the survey has
63000 (partly learned) rules and is used for disease event analysis. The most
time consuming took 100 person months to develop and is used to determine pa-
rameters to operate a medical imaging system. Slightly over 50% of the projects
involve at least one domain expert that creates rules herself.

On average the people filling out the survey had 6.6 years of experience with
rule based systems and 15 years experience with creating computer programs in
general.

Fig. 1. The development methodology used, for all responses and for the 26
responses where the rule base development took at least 6 person months.

The tasks of the rule bases (entered as free text) include workflow manage-
ment, diagnosis, scoring, ontology reasoning, tutoring and planning. The rule
bases are created for a multitude of different domains, including insurance, fi-
nance, health care, biology, computer games, travel and software engineering.

38% of the rule bases are commercially deployed, 26% are deployed in a
research setting and 10% are under development with deployment planned. The
remaining 26% are prototypes, 10% are prototypes that are also used by others
than the developers.

5 Methods and Tools Used for Development

Participants of the survey where given a multiple choice question to describe the
methods used for the development of the rule base. The answers (see figure 1)
showed that indeed a large part of rule based systems are created without any
specific development process and that the rise of agile and iterative methods
[9,10] is also visible for rule based systems. In 1991, Hamilton et al. [2] used a
similar question and found that the most used model was the cyclic model (41%)
and that 22% of the respondents followed no model3.

Percent responses

Simple text editor 33%
Textual rule editor 28%
Constraint language, business language rule editor 10%
Graphical rule rditor 26%
Spreadsheets based rule editor 12%
Decision trees rule editor 9%
Rule Learning 5%
An IDE that allows to edit, load, debug and run rules 46%

Table 2. Use of tools for the development of rules

The next questions asked participants for the tools used for the development.
The results show that almost half of the respondants use an integrated devel-
opment environment (IDE)4 [11], . For editing rules the most widely used tools
are still textual editors, with 33% and 28% of respondents stating that they use
a simple text editor or a textual rule editor with syntax highlighting. With 26%
of respondents using them, graphical rule editors are also widespread (see table
2).

3 However, care should be taken when comparing these numbers, since the sample of
the surveys differs considerable: on average the projects discussed [2] were consider-
able larger.

4 Such as the Ontoprise’s Ontostudio [11], Ilog Rule Studio [12], the Visual Prolog
IDE [13] or the SWRL tab of Protege [14].

The results show that the overwhelming majority of rule bases is still created
manually; is not learned or generated as some expect. Further it shows that text
editors - even simple ones without syntax highlighting - are still used, meaning
that even simple typos that could be prevented by more elaborate tools will
still happen in practice. Finally the questions about methods used revealed a
preference for agile processes and even no development process at all - meaning
in particular that tools cannot rely on the availability of formal specifications.

6 Verification, Bugs and Debugging

To gain an overview of the verification state of practice, the survey included
a multiple choice question that asked participants to check all V&V tools or
methods that they use in their project.

Fig. 2. The verification and validation methods and tools used, in percent of
respondants

The results show (a summarize is shown in figure 2) that verification is dom-
inated by testing (used by 90%) and code review (used by 78%). 74% of re-
spondents do testing with actual data, 50% test with contrived data. Advanced
methods of test organization are used by a minority, with only 31% doing regres-
sion testing and 19% doing structural testing with test coverage metrics. Code
review is done equally by domain experts (53%) and developers (57%), most
projects combine both (73% of projects that perform a code review, have both
domain experts and developers do it). The system is used parallel to develop-
ment in 17% of the projects; in 16% it is used by developers; in 14% by domain
experts.

O’Leary [3] posed a similar question to the developers of expert systems in
1991, asking about the validation effort spent on particular methods. In the

average over all responses, he found that most effort is spent on testing with
actual data (31% of validation effort), followed by testing with contrived data
(17.9%), code review by domain expert (17.6%), code review by developer (13%),
parallel use by expert (12%) and parallel use of system by non-expert (7%).

6.1 Debugging Tools

Debugging is dominated by procedural debuggers, i.e. debuggers similar to the
ones used in procedural programming; tools that allow to specify breakpoints,
to suspend the inference engine and to explore the stepwise execution of the
program5. 37% of the projects used a command line procedural debugger and
46% a graphical procedural debugger. Explanations are used by almost a quarter
(23%) of the respondents for debugging. An overview of these results are shown
in figure 3.

Fig. 3. Tools used for debugging

Surprisingly widespread is the use of Algorithmic Debugging [16] and Why-
Not Explanations (e.g. [17,18]), considering that to the best knowledge of the
author there is no widely available and currently maintained implementation
of either of these debugging paradigms. For the systems used by three of the
five people that professed to use Algorithmic Debugging (JBoss rules/Drools
and Fair Isaac Blaze Advisor) no mentioning of any such debugger could be
5 An overview and description of the different debugging paradigms for rule based

systems can be found in [15].

found and it seems likely that the short explanation for this debugging paradigm
given in the survey (’system tries to identify error by asking user for results
of sub computations’) was insufficient to convey the meaning of this concept.
Similarly for Why-Not explanations three of the four respondents use systems
for which such no mentioning of such debuggers could be found. The remaining
two responses for Algorithmic Debugging and the remaining one for Why-Not
explanations use Prolog dialects, where such debuggers have existed/exist.

6.2 Bugs, Symptoms of Faults in the Rule Base

Debugging is the process of tracking down a fault based on error revealing values.
The difficulty of this process and the kind of tools that can support it, depends
on the error revealing values and how well these allow for the identification of
the fault. In the author’s experience based on F-logic, most faults in rule based
systems cause a query to not return any result (the so called no-result-case) or to
return fewer results than expected. This stands in contrast to the development
with modern object-oriented languages where in many cases at least a stack trace
is available. This is problematic because a no-result-case gives only very little
information for fault localization and means that most explanation approaches
are not suitable for debugging (because these rely on the existence of a result).
A question was included in the survey about the common symptoms of faults in
the rule base to check whether this patterns of error revealing values holds for
rule based systems in general.

frequent seldom never

A query/test would not terminate 7 57 30
A query/test did not return any result 38 47 11
A wrong result was returned 53 39 5
A part of the result missing 31 42 20
The rule engine crashed 9 47 38

Table 3. Bugs, symptoms of faults in the rule base in percent of responses. To
100% missing percent: respondents selected not applicable

The results (see table 3) show ’wrong results’ as the most frequent bug,
followed by ’no results’ and ’partial results’. Most participants encounter not
terminating tests and crashing rule engines only seldom. The results show also
that 60% of participants frequently and 34% sometimes encounter a fault show-
ing itself in the failure of the rule base to conclude an expected result/result
part. For the developers of the system using declarative rules (see section 4),
the no-result case is the most frequent bug. These results underline the need
for debugging approaches to support users in diagnosing bugs based on missing
conclusions.

7 Issues and Comparison to Procedural Programming

On the last page of the survey participants were asked to rank a number of
possible issues as Not an Issue, Annoyance or Hindered Development. An average
score was obtained for the issues by multiplying the annoyance answers with 1,
the hindrance answers with two and dividing by the number of all answers. The
aggregated answers for this question are shown in the table 76.

Average Not an Issue Annoyance Hindrance

Debugging 1 12 28 12
Determining completeness 0.76 18 27 6
Supporting tools missing/immature 0.67 26 17 9
Editing of rules 0.66 24 23 6
Determining test coverage 0.65 25 19 7
Inexperienced developers 0.58 31 13 9
Rule expressivity 0.5 33 12 7
Keeping rules base up to date 0.5 30 19 4
Understanding the rule base 0.47 31 19 3
Runtime performance 0.41 35 14 4
Organizing collaboration 0.41 35 14 4

Table 4. Issues hindering the development of rule based systems. Numbers show
the actual number of participants that selected an option. Please note that the
’Rule Expressivity’ option was phrased in a way that asked also for things that
could not easily be represented, not only things that could not be represented
at all.

The results show the issues of debugging, validation and tool support as
the most important ones. The issues of probably the largest academic interest
- runtime performance and rule expressivity, are seen as lesser problem. This is
particulary interesting in the light of the fact that of the 7 survey participants
that stated they were hindered by rule expressivity, none used a declarative rule
system (for which these questions are debated the loudest).

These findings of verification and validation issues as the most important
ones are similar to the finding of Leary [3]. He found that the potentially biggest
problems were determining the completeness of the knowledge base and the
difficulty to ensure that the knowledge in the system is correct.

In a final question participants were asked how a rule base development
process compares to the development of a conventional program (created with
procedural or object oriented languages) of similar size. A number of proper-
ties was given to be ranked with Rule base superior, Comparable, Conventional
6 Please note that the Rule Expressivity option was phrased in a way that asked also

for things that could not easily be represented, not only things that could not be
represented at all.

program superior and Don’t know. The aggregated score for each property was
determined by subtracting the the number of conventional program superior an-
swers from the rule base superior answers and dividing the result by the number
of answers other than don’t know.

Fig. 4. Participants opinion about the strength and weaknesses of rule base
development compared to that of ’conventional’ programs. Positive numbers
indicate that the majority thought rule bases to be superior, negative numbers
that they thought conventional programs to be superior.

The participants of the survey judged rule bases to be superior in most
respects. The largest consensus was that rule bases are indeed easier to change
and to maintain. Easy of creation, ease of reuse, understandability and reliability
are also seen as the strong points of rule based systems. A small majority saw
conventional programs as superior in runtime performance; most saw rule bases
as inferior in ease of debugging support and tool support for development.

8 Conclusion

The developers of rule based system are indeed seeing the advantages in ease of
change, reuse and understandability that were expected from rule based (and
declarative) knowledge and program specification. However, there are also issues
hindering the development of these systems with verification and validation and
the tool support for development topping the agenda.

Particularly debugging is seen most frequently as an issue negatively affect-
ing the development of rule bases and as one area were rule base development is

lacking behind procedural and object oriented program development. This rela-
tive difficulty of debugging may be caused either by a lack of refined debugging
tools or by intrinsic properties of rule bases that make these hard to debug7; in
either case it should be a priority topic for researchers and practitioners in the
area of rule based systems. The results from the survey further show that many
of the older innovative approaches for the debugging of rules are not used widely
in practice; resuscitating these and refining them for practical use may be one
way to tackle this debugging challenge of rule based systems8. That 60% of the
projects frequently and another 34% sometimes encounter a fault showing itself
in the failure of a rule base to conclude an expected result/result part show that
the diagnosis of bugs based on missing conclusions must be a core feature of any
new debugging tool.

Missing and immature tools support for the development of rule bases as
the other big issue can be seen as another motivation for the already ongoing
efforts to standardize rule languages. A tool supporting a standartized (and
widely accepted) rule language could be developed with more resources, because
its potential market would be larger than one for a tool supporting just one
language in a fragmented rule landscape.

Finally this survey together with a literature research reveals a lack of method-
ological support for the development of rule bases: 38% of the larger projects in
the survey use agile or iterative methods; at the same time there is no established
agile or iterative methodology for rule based systems. Exploring, describing and
supporting the transfer of agile and iterative methods to the development of
rule based systems should be one major topic for the future development of rule
based systems; notable first movements in this direction are the open sourcing of
Ilogs Agile Business Rule Development methodology [19] and the authors own
work on the adoption of eXtreme programming for rule development [20].

9 Acknowledgements

The author thanks Hans-Joerg Happel, Andreas Abecker, Michael Erdman,
Katharina Siorpaes and Merce Mueller-Gorchs for their support in creating and
realizing this survey.

References

1. Zacharias, V.: Rules as simple way to model knowledge: Closing the gap between
promise and reality. In: To Appear: Proceedings of the 10th International Confer-
ence on Enterprise Information Systems. (2008)

2. Hamilton, D., Kelley, K.: State-of-the-practice in knowledge-based system verifi-
cation and validation. Expert Systems With Applications 3 (1991) 403–410

3. O’Leary, D. In: Design, Development and Validation of Expert Systems: A Survey
of Developers. John Wiley & Sons Ltd. (1991) 3–18

7 [1] details some hypothesis on what those properties may be
8 See [15] for an overview including the older debugging approaches

4. Cusumano, M., MacCormack, A., C., Kemerer, F., Crandall, B.: Software devel-
opment worldwide: The state of the practice. IEEE Software 20 (2003)

5. Zhao, L., Elbaum, S.: A survey on quality related activities in open source. SIG-
SOFT Software Engineering Notes 25(3) (2000) 54–57

6. Zhao, L., Elbaum, S.: Quality assurance under the open source development model.
Journal of Systems and Software 66 (2003) 65–75

7. Runeson, P., Andersson, C., Thelin, T., Andrews, A., Berling, T.: What do we
know about defect detection methods? IEEE Software 23 (2006) 82–90

8. SurveyMonkey: Surveymonkey. http://www.surveymonkey.com/ (2008) (accessed
2008-05-29).

9. Larman, C., Basili, V.: Iterative and incremental development: A brief history.
IEEE Computer June (2003) 47–56

10. MacCormack, A.: Product-development practices that work. MIT Sloan Manage-
ment Review (2001) 75–84

11. Ontoprise: Ontostudio. http://www.ontoprise.de/ (2007) (accessed 2007-02-27).
12. Ilog: Ilog business rule management systems. http://www.ilog.com/products/

businessrules/ (2008) (accessed 2008-29-04).
13. : Visual Prolog. http://www.visual-prolog.com/ (accessed 2008-08-19).
14. Golbreich, C., Imai, A.: Combining swrl rules and owl ontologies with protege owl

plugin, jess and racer. In: Proceedings of the 7th International Protege Conference.
(2004)

15. Zacharias, V.: The debugging of rule bases. In: to appear in Handbook of Re-
search on Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches, IGI Global (2009)

16. Shapiro, E.: Algorithmic program debugging. PhD thesis, Yale University (1982)
17. Chalupsky, H., Russ, T.: Whynot: Debugging failed queries in large knowledge

bases. In: Proceedings of the Fourteenth Innovative Applications of Artificial In-
telligence Conference (IAAI-02). (2002) 870–877

18. Becker, M., Nanz, S.: The role of abduction in declarative authorization policies.
In: in Proceedings of the 10th International Symposium on Practical Aspects of
Declarative Languages (PADL). (2008)

19. Ilog: Agile business rule development. http://www.ilog.com/brms/media/ABRD/
(2008) (accessed 2008-05-31).

20. Zacharias, V.: The agile development of rule bases. In: Proceeedings of the 16th
International Conference on Information Systems Development. (2007)

http://www.ontoprise.de/
http://www.ilog.com/products/businessrules/
http://www.ilog.com/products/businessrules/
http://www.visual-prolog.com/

	Technical Report: Development and Verification of Rule Based Systems - a Survey of Developers
	Valentin Zacharias

